Stateless Network Functions: Breaking the Tight Coupling of State and Processing

نویسندگان

  • Murad Kaplan
  • Azzam Alsudais
  • Eric Keller
  • Franck Le
چکیده

In this paper we present Stateless Network Functions, a new architecture for network functions virtualization, where we decouple the existing design of network functions into a stateless processing component along with a data store layer. In breaking the tight coupling, we enable a more elastic and resilient network function infrastructure. Our StatelessNF processing instances are architected around efficient pipelines utilizing DPDK for high performance network I/O, packaged as Docker containers for easy deployment, and a data store interface optimized based on the expected request patterns to efficiently access a RAMCloud-based data store. A network-wide orchestrator monitors the instances for load and failure, manages instances to scale and provide resilience, and leverages an OpenFlow-based network to direct traffic to instances. We implemented three example network functions (network address translator, firewall, and load balancer). Our evaluation shows (i) we are able to reach a throughput of 10Gbit/sec, with an added latency overhead of between 100μs and 500μs, (ii) we are able to have a failover which does not disrupt ongoing traffic, and (iii) when scaling out and scaling in we are able to match the ideal performance.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

طراحی کنترل کننده پیش بین سیستم بویلر- توربین

A nonlinear model predictive control (NMPC) algorithm based on neural network is designed for boiler- turbine system. The boiler–turbine system presents a challenging control problem owing to its severe nonlinearity over a wide operation range, tight operating constraints on control move and strong coupling among variables. The nonlinear system is identified by MLP neural network and neur...

متن کامل

Synchronization for Complex Dynamic Networks with State and Coupling Time-Delays

This paper is concerned with the problem of synchronization for complex dynamic networks with state and coupling time-delays. Therefore, larger class and more complicated complex dynamic networks can be considered for the synchronization problem. Based on the Lyapunov-Krasovskii functional, a delay-independent criterion is obtained and formulated in the form of linear matrix inequalities (LMIs)...

متن کامل

Pseudo Steady State Gas Flow in Tight Reservoir under Dual Mechanism Flow

Gas reservoirs with low permeability (k<0.1 mD) are among the unconventional reservoirs and are commonly termed as "Tight Gas Reservoirs". In conventional gas reservoirs that have high permeability, the flow of gas is basically controlled by the reservoir permeability and it is calculated using the Darcy equation. In these reservoirs, gas flow due to gas diffusion is ignored compared to Dar...

متن کامل

Improvement and parallelization of Snort network intrusion detection mechanism using graphics processing unit

Nowadays, Network Intrusion Detection Systems (NIDS) are widely used to provide full security on computer networks. IDS are categorized into two primary types, including signature-based systems and anomaly-based systems. The former is more commonly used than the latter due to its lower error rate. The core of a signature-based IDS is the pattern matching. This process is inherently a computatio...

متن کامل

I-V Characteristics of a Molecular Wire of Polyaniline (Emeraldine Base)

In this study, Polyaniline molecule (emeraldine base) is modeled as a molecular wire and the effects of the metal/molecule coupling strength and the molecule length on the current-voltage (I-V) characteristics are numerically investigated. Using a tight-binding Hamiltonian model, the methods based on Non-equilibrium Green’s function theory, Landauer formalism and Newns-Anderson model, our calcu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017